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Problems seeking the optimal anisotropy and rational bonding structure of composite 
material components in the plane stress or plane deformation state were studied in [1-5]. 
A criterion for maximal strength of components from laminar anisotropic composites is set up 
in [i, 2]. Optimality conditions are obtained in [3, 4] and in the case of axial symmetry 
optimization problems for anisotropic plate stiffness are solved. Optimality conditions are 
determined in [5] in the problem of maximizing the carrying capacity of a body from an aniso- 
tropic plastic material. Using these conditions, optimal bonding schemes [4] can be found 
numerically. As regards the analytic solutions, they are obtained successfully only for high 
symmetry of the structure since because of nonlinearity of the optimality conditions the cor- 
responding problem also turns out to be nonlinear. Substantial simplifications can be 
achieved because of idealization of the rheological model of the material. 

A composite medium bonded by two families of inextensible fibers is examined in this 
paper. Such a medium is called an ideal fibrous composite [6, 7]. The problem of seeking 
the material bonding scheme is sought for which the loads are perceived just by the fibers 
while there are no stresses in the binder. Existence conditions are obtained for equally 
stressed bonding schemes, and it is shown that finding them upon satisfaction of certain con- 
ditions reduces to solving a Dirichlet problem for the Laplace equation. 

i. EQUATIONS OF THE THEORY OF AN IDEAL FIBROUS COMPOSITE 

The model of an ideal fibrous composite is the simplest model of a material comprised 
of high-modulus fibers and low-modulus matrix and consists of assuming two hypotheses: the 
fibers are distributed continuously in the matrix and they are inextensible. 

We obtain the equilibrium equation of a plane medium bonded by two families of inex- 
tensible fibers under the assumption that the stresses in the matrix are zero. Let us con- 
sider a plate of unit thickness under plane stress state conditions. In a two-dimension do- 
main ~ that the plate occupies, we introduce a system of curvilinear orthogonal coordinates 
x i, x 2 (Fig. i), and its directions i i and i S. We give the stacking directions of the two 
fiber families at each point by the unit vectors Jl and J2. Let the first fiber make the 
angle ~ with the axis i I and the second the angle ~, i.e., il.ji = cos % ii.j 2 = cos~ (the dot 
denotes the scalar product of vectors). Let us consider the angles ~ and ~ to vary from 
point to point and be sufficiently smooth functions of the coordinates. The stresses in the 
material are characterized by the tensor 

where o =~ are components of the tensor a in the xl, x 2 coordinate system, E=$ are components 
of ~ in the oblique-angled coordinate system associated with the vectors Jl and J2, the sym- 
bol | denotes the direct product of tensors [8]. Here and henceforth summation from i to 2 
is performed over pairs of repeated Greek subscripts. Since only the fibers perceive the 
load in the case under consideration, the matrix of the components E~ of the tensor a has 
the diagonal form 

Eil =p, E '2 = q, E i~ = E 2i = 0. 

Let us find the explicit form of the matrix o~ of the components of the stress tensor 
in the xix = coordinate system. To do this we take into account that Jl, J2 are obtained 

from il, i ~ by rotation through angles ~ and @, respectively: 
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Then from (i.i) 

from which 

aTe=cons% 
\ 

Fig. 1 

Ji ---- il cos q) q- izsin q), Je ---- ii cos ~p q- i e s i n ~ .  

= E ~ ja | J$ = PJ~ | J~ q- qJ2 @ ]2 ~-- P( c~ q;it @ il ~- 2 sin q) COS q)ii~) 

| i s + sin~ (pi.., | i2) -4- q(cos"-q~i~ | i 1 + 2 cosq~sin~i t @ izA- sin~q~iz | i z )=  oaf'i= | i~, 

( l .2)  

(pcos:cp.+ qcos~r (l/2) p s i n 2 1 +  (t{'2)qsin2t~/ 

~  = \(1/2) p sin 2q~ + (t/2)7 sin 2~ p sin" q~ + q sin: ~ J" 
( 1 . 3 )  

The equilibrium equations of a medium in the case of no bulk forces have the form 

0 
ax-] (He~11) + ~ (HI~12) -- ~ " ~aS' + oleaSldx e = 0, 

(1.4) 
ag cie aH 2 = (> 

(Hz, H2 are Lame coefficients of the coordinate system xix2). Substitution of (1.3) into 
(1.4) yields 

2 ~ (P cose q9 + q cos e ~) + (p sin 2~ + q sin 2~) + 

OH i OH e 
+ (p sin 2(p + q sin 2~p) o--~- + (p cos 2q~ A- q cos 2~) ~-~- = O, (1.5) 

H e 0 
(p sin 2r + q s in2~)+ Hi~~176 (p sin%p + q sin e ~) - -  

2 Ox I 

OH i 
~ ~p ~0~ 2~  + q cos 2~) ~--:-- + (p sin 2cp + q sin 2~) ~--: -= = 0. 

Let us consider that static boundary conditions 

onnl  + OlZne = T1, olenz + ~22ne = T 2, ( 1 . 6 )  

are given everywhere on the domain boundary, where T i, T 2 are surface force vector compo- 
nents, nz, n 2 are projections of the unit normal to the boundary on the ii, i 2 axes. The 
boundary conditions in terms of p and q take the form 

(p cos2q) -]- q cos2xP)ni --}- (l/2)(p sin 2q) q- q sin 2~)n2 = T l, 
(t/2)(p sin 2(p -k q sin 2~)nl -k (p sin2q9 + q sin2~)n2 = T 2. 

(1.7) 

Let us note that for given ~ and ~ the boundary value problem (1.5) and (1.7) to deter- 
mine the functions p and q is not always solvable. This means that the fiber system charac- 
terized by the stacking angles ~ and ~ and loaded by the forces T z and T 2 is statically non- 
equilibrated. In a composite medium bonded by inextensible elements, this nonequilibration 
is compensated because of stress in thematrix. Reasoning in reverse order, it is easy to 

307 



arrive at the deduction that the solvability of (1.5) and (1.7) indicates the absence of 
stress in the matrix of the composite medium under consideration that is loaded in conformity 
with (1.6). 

Before going over to formulation of the problem of rational bonding, we mention the 
physical meaning of p and q. The fiber tension vectors F and G have the following components 

(F -- f~i1+fyi2, G = G~i I + Gyi2): in a Cartesian coordinate system 

f x  = ] c o s %  f y = / s i n  ~, Gx = gcos~ ,  G U = g s i n ~  

( f  and g a r e  t h e  f i b e r  t e n s i o n s  o f  t h e  f i r s t  and s e c o n d  f a m i l i e s ) .  L e t  us  now i n t r o d u c e  t h e  
f i b e r  c o n c e n t r a t i o n s  D1 and q2 by d e f i n i n g  them as  t h e  number o f  f i b e r s  o f  e a c h  f a m i l y  p a s s -  
ing  t h r o u g h  a s i n g l e  s e c t i o n  p e r p e n d i c u l a r  t o  t h e  f i b e r  d i r e c t i o n  h e r e .  E v a l u a t i n g  t h e  p r o -  
j e c t i o n  of the total force on a segment of unit length perpendicular to the fiber direction, 
we obtain p = fql, q = gn2. Thus, p and q are the fiber tensions referred to unit length. 

2. EQUALLY STRONG BONDING SCHEME BY TWO NONORTHOGONAL 
FIBER SYSTEMS 

The equations (1.5) and (1.7) were considered in Sec. 1 as relationships to determine 
the fiber tensions p and q. Let us formulate the inverse problem. Let it now be required 
to find the distribution of fiber stacking angles in the xlx 2 plane given by the functions 
@(xl, x2), ~(xl, x 2) so that the stress in the fibers would satisfy the equalities 

p(zl, x~) = P, q(x.  x~) = Q, ( 2 . 1 )  

where  P, Q a r e  g i v e n  q u a n t i t i e s .  For  an e q u a l l y  s t r o n g  bond ing  scheme P and Q a r e  i d e n t i c a l  
c o n s t a n t s .  

I t  i s  e x p e d i e n t  t o  s t a r t  c o n s t r u c t i o n  o f  an e q u a t l y  s t r o n g  bond ing  scheme by s e e k i n g  
t h e  s o l u t i o n  o f  t h e  b o u n d a r y  v a l u e  p r o b l e m  f o r  011 , o 22, o 12 in  wh ich  t h e  r e l a t i o n s h i p s  ( i . 4 )  
a r e  s u p p l e m e n t e d  by t h e  e q u a t i o n  

onq_~22 = p  q_Q = c o n s t  ( 2 . 2 )  

and t h e  b o u n d a r y  c o n d i t i o n s  

~ = Tin1 - -  T~n2 q- n22(P -~- Q)' ( 2 . 3 )  
~ ( s )  = T~n~ - -  Tin1 + n21(P + Q), an(s) : Tln~ 4- T2nx - -  nln2(P 31- Q), 

obtained from (1.4) with (2.2) taken into account. 

In the general case the boundary value problem (1.4), (2.2), and (2.3) is overdefined, 
however, if the functions T1(s), T2(s) satisfy a certain additional relationship, it turns 
out to be correct. Let us clarify the above for the case when the xlx 2 coordinate system 
agrees with a global xy Cartesian coordinate system. Taking (2.2) into account, (1.4) take 
on the form 

Offxx Offxy Ogxy Ogxx 
0x +~ =0' "0x @ 0. (2.4) 

The relationships (2.4) are Cauchy-Riemann conditions and, therefore, 
gate harmonic functions 

(A is the Laplace operator). 
property mentioned. 

A~xx = 0, A~xy = 0 

It is easy to note that the pair Oyy 

~ and Oxy are conju- 

(2.5) 

and Oxy also possess the 

The presence of the two boundary conditions (2.3) for two harmonically conjugate func- 
tions overdefines the problem since the correct formulation consists in giving just one of 
the conditions (2.3) on the boundary of the domain E. However if the functions Tx(s) and 
Tv(s) are subjected to a definite relationship, the boundary value problem (2.3) and (2.4), 
a~d additionally the problem (1.4), (2.2), and (2.3) are normally solvable. The derivation 
of this relationship is the following. The Dirichlet problem is solved for (2.5), say, with 
the first condition (2.3) and the harmonic function Oxx(X, y) is determined. Later the con- 
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Fig. 2 

jugate harmonic function Oxy(X, y) is sought by integrating (2.3). The boundary values 

Oxx(S) and Oxy(S) are thereby determined. The force components Tx(s) and Ty(s) should satis- 

fy the system of equalities (2.3) identically along the whole boundary. If this condition 
cannot be satisfied at some point of the boundary, then this means that the equally strong 
solution for the given boundary conditions Tx(s) and Ty(s) in the whole domain including the 

boundary is not found successfully. 

We now assume that the forces T1(s) and T2(s) are such that the stresses o11(xi, x2) , 
U22(XI, X2) , OI2(xI, X2) are determined in the domain ~ as functions of the parameter P + Q. 
Finding the bonding angles reduces to solving a transcendental system of algebraic equations 
for ~(xl, x2) , ~(xl, x2): 

P c o s 2 r  ~2, P s i n 2 ~ q - Q s i n 2 ~  = 2 ~  n. ( 2 . 6 )  

Let us obtain the solution of this system of equations. Transferring terms containing ~ to 
the right side, squaring both equations and combining, we have 2Q(a cos 2~ + b sin 2~) = a S + 
b 2 + Q2 _ p2(a = oll_ o22, b = 2o12). This equation and an analogous one for ~ reduce to 

sin 2(a + ~ )  = (R ~ q-Q2 _ p2)I2QR, ( 2 . 7 )  
sin 2(~  + r  = (R 2 + p2 -Q:)~PR. 

Here R(P + Q) is the second invariant of the stress tensor deviator R(P + Q) = /(o 11 - 

o22)2 + 4(o12)2 The angle ~ is defined by the equality tan2~ = a/b. Let us note that not 
all the roots of (2.7) satisfy (2.6) although the converse assertion is, it is understood, 
valid and it is necessary for the solvability of (2.6) and (2.7) that P and Q correspond to 
definite constraints. The domain of allowable P and Q is given by the system of inequalities 

max I R2tQ2--P2I<~.I ,  
(Xr~C~)~a 1 2OR 1 

max IRzz--Q2+- P2 !~  " 
(.1,x2)Ea I 2PR I . ~  1. 

If the pair of values of P and Q selected initially does not satisfy the constraints 
(2.8), a material with other values of the fiber strength should be chosen. 

( 2 . 8 )  

3. RATIONAL BONDING OF A DISC LOADING UNIFORMLY 
AT THE EDGES 

To illustrate the method proposed for seeking the rational plate bonding scheme, we 
present an example of computing an equally strong bonding scheme for a disc loaded along 
the inner radius. Let the boundary conditions be given in the form (r I < r 2) 

ar (q)  = - - T ,  ar (r2) = 0, ~0r (rl) = a0r (r2) = 0. 

Le t  us seek  t h e  bonding scheme s a t i s f y i n g  t h e  r e l a t i o n s h i p  

( 3 . 1 )  

p -= Q = (I/2)K, ~2(r) -- --qD(r). ( 3 . 2 )  
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The equalities O8r(8, r) m 0, ~ = ~/4 are a corollary of (3.2). The relationships (1.4) and 
(2.2) are written in the form 

d [arr] = %,  ar + ao = K .  ( 3 . 3 )  

The solution of the boundary value problem (3.1) and (3.3) exists for values of the param- 
eters T and K connected by the relationships K = 2Tr12/(r22 - rz 2) and has the form 

Tr~ ~r~ (~ - -  r ~ / r ~ )  ~o = (i + r ~ I r ~ )  �9 
r 2 -- r I 

The bonding angle is given by the expression 

= ( l /2)arccos(--r~2) .  

The fiber stacking lines corresponding to (3.4) are indicated in Fig. 2. 

( 3 . 4 )  
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